Generalization of Spectrum Differential based Direct Waveform Modification for Voice Conversion

We present a modification to the spectrum differential based direct waveform modification for voice conversion (DIFFVC) so that it can be directly applied as a waveform generation module to voice conversion models. The recently proposed DIFFVC avoids the use of a vocoder, meanwhile preserves rich spectral details hence capable of generating high quality converted voice. To apply the DIFFVC framework, a model that can estimate the spectral differential from the F0 transformed input speech needs to be trained beforehand. This requirement imposes several constraints, including a limitation on the...

Hierarchical Sequence to Sequence Voice Conversion with Limited Data

We present a voice conversion solution using recurrent sequence to sequence modeling for DNNs. Our solution takes advantage of recent advances in attention based modeling in the fields of Neural Machine Translation (NMT), Text-to-Speech (TTS) and Automatic Speech Recognition (ASR). The problem consists of converting between voices in a parallel setting when audio pairs are available. Our seq2seq architecture makes use of a hierarchical encoder to summarize input audio frames. On the decoder side, we use an attention based architecture used in recent TTS works. Since there is a dearth of large ...

Refined WaveNet Vocoder for Variational Autoencoder Based Voice Conversion

This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet vocoders are trained with natural acoustic features but conditioned on the converted features in the conversion stage for VC, and such a mismatch often causes significant quality and similarity degradation. In this work, we take advantage of the particular structure of VAEs to refine WaveNet vocoders with the self-reconstructed features generated ...

Investigation of F0 conditioning and Fully Convolutional Networks in Variational Autoencoder based Voice Conversion

In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted in conventional VC systems, and hypothesize that the spectral features are in fact F0 dependent. Such hypothesis implies that during the conversion phase, the latent codes and the converted features in VAE based VC are in fact source F0 dependent. To this end, we propose to utilize the F0 as an additional input of the decoder. The model can learn ...

AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain underexplored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that ...

Many-to-Many Voice Conversion with Out-of-Dataset Speaker Support

We present a Cycle-GAN based many-to-many voice conversion method that can convert between speakers that are not in the training set. This property is enabled through speaker embeddings generated by a neural network that is jointly trained with the Cycle-GAN. In contrast to prior work in this domain, our method enables conversion between an out-of-dataset speaker and a target speaker in either direction and does not require re-training. Out-of-dataset speaker conversion quality is evaluated using an independently trained speaker identification model, and shows good style conversion characteris...

Crossmodal Voice Conversion

Humans are able to imagine a person's voice from the person's appearance and imagine the person's appearance from his/her voice. In this paper, we make the first attempt to develop a method that can convert speech into a voice that matches an input face image and generate a face image that matches the voice of the input speech by leveraging the correlation between faces and voices. We propose a model, consisting of a speech converter, a face encoder/decoder and a voice encoder. We use the latent code of an input face image encoded by the face encoder as the auxiliary input into the speech conv...

CycleGAN-VC2: Improved CycleGAN-based Non-parallel Voice Conversion

Non-parallel voice conversion (VC) is a technique for learning the mapping from source to target speech without relying on parallel data. This is an important task, but it has been challenging due to the disadvantages of the training conditions. Recently, CycleGAN-VC has provided a breakthrough and performed comparably to a parallel VC method without relying on any extra data, modules, or time alignment procedures. However, there is still a large gap between the real target and converted speech, and bridging this gap remains a challenge. To reduce this gap, we propose CycleGAN-VC2, which is an...

Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source spea...

Singing voice conversion with non-parallel data

Singing voice conversion is a task to convert a song sang by a source singer to the voice of a target singer. In this paper, we propose using a parallel data free, many-to-one voice conversion technique on singing voices. A phonetic posterior feature is first generated by decoding singing voices through a robust Automatic Speech Recognition Engine (ASR). Then, a trained Recurrent Neural Network (RNN) with a Deep Bidirectional Long Short Term Memory (DBLSTM) structure is used to model the mapping from person-independent content to the acoustic features of the target person. F0 and aperiodic are...