Converting Anyone's Emotion: Towards Speaker-Independent Emotional Voice Conversion

Emotional voice conversion aims to convert the emotion of the speech from one state to another while preserving the linguistic content and speaker identity. The prior studies on emotional voice conversion are mostly carried out under the assumption that emotion is speaker-dependent. We believe that emotions are expressed universally across speakers, therefore, the speaker-independent mapping between emotional states of speech is possible. In this paper, we propose to build a speaker-independent emotional voice conversion framework, that can convert anyone's emotion without the need for paralle...

Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source spea...

Error Reduction Network for DBLSTM-based Voice Conversion

 So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The propo...