Voice Conversion Challenge 2020: Intra-lingual semi-parallel and cross-lingual voice conversion

The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed a new database for two tasks, intra-lingual semi-parallel and cross-lingual VC. After a two-month challenge period, we received 33 submissions, including 3 baselines built on the database. From the results of crowd-sourced listening tests, we observed that VC methods have progressed rapidly thanks to advanced deep learning methods. In particular, s...

An Overview of Voice Conversion and its Challenges: From Statistical Modeling to Deep Learning

Speaker identity is one of the important characteristics of human speech. In voice conversion, we change the speaker identity from one to another, while keeping the linguistic content unchanged. Voice conversion involves multiple speech processing techniques, such as speech analysis, spectral conversion, prosody conversion, speaker characterization, and vocoding. With the recent advances in theory and practice, we are now able to produce human-like voice quality with high speaker similarity. In this paper, we provide a comprehensive overview of the state-of-the-art of voice conversion techniqu...

Bootstrapping non-parallel voice conversion from speaker-adaptive text-to-speech

Voice conversion (VC) and text-to-speech (TTS) are two tasks that share a similar objective, generating speech with a target voice. However, they are usually developed independently under vastly different frameworks. In this paper, we propose a methodology to bootstrap a VC system from a pretrained speaker-adaptive TTS model and unify the techniques as well as the interpretations of these two tasks. Moreover by offloading the heavy data demand to the training stage of the TTS model, our VC system can be built using a small amount of target speaker speech data. It also opens up the possibility ...

MOSNet: Deep Learning based Objective Assessment for Voice Conversion

Existing objective evaluation metrics for voice conversion (VC) are not always correlated with human perception. Therefore, training VC models with such criteria may not effectively improve naturalness and similarity of converted speech. In this paper, we propose deep learning-based assessment models to predict human ratings of converted speech. We adopt the convolutional and recurrent neural network models to build a mean opinion score (MOS) predictor, termed as MOSNet. The proposed models are tested on large-scale listening test results of the Voice Conversion Challenge (VCC) 2018. Experimen...

Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source spea...

A Spoofing Benchmark for the 2018 Voice Conversion Challenge: Leveraging from Spoofing Countermeasures for Speech Artifact Assessment

Voice conversion (VC) aims at conversion of speaker characteristic without altering content. Due to training data limitations and modeling imperfections, it is difficult to achieve believable speaker mimicry without introducing processing artifacts; performance assessment of VC, therefore, usually involves both speaker similarity and quality evaluation by a human panel. As a time-consuming, expensive, and non-reproducible process, it hinders rapid prototyping of new VC technology. We address artifact assessment using an alternative, objective approach leveraging from prior work on spoofing cou...

The Voice Conversion Challenge 2018: Promoting Development of Parallel and Nonparallel Methods

We present the Voice Conversion Challenge 2018, designed as a follow up to the 2016 edition with the aim of providing a common framework for evaluating and comparing different state-of-the-art voice conversion (VC) systems. The objective of the challenge was to perform speaker conversion (i.e. transform the vocal identity) of a source speaker to a target speaker while maintaining linguistic information. As an update to the previous challenge, we considered both parallel and non-parallel data to form the Hub and Spoke tasks, respectively. A total of 23 teams from around the world submitted thei...

High-quality nonparallel voice conversion based on cycle-consistent adversarial network

Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neu...