Unsupervised Representation Disentanglement using Cross Domain Features and Adversarial Learning in Variational Autoencoder based Voice Conversion

An effective approach for voice conversion (VC) is to disentangle linguistic content from other components in the speech signal. The effectiveness of variational autoencoder (VAE) based VC (VAE-VC), for instance, strongly relies on this principle. In our prior work, we proposed a cross-domain VAE-VC (CDVAE-VC) framework, which utilized acoustic features of different properties, to improve the performance of VAE-VC. We believed that the success came from more disentangled latent representations. In this paper, we extend the CDVAE-VC framework by incorporating the concept of adversarial learning...

Investigation of F0 conditioning and Fully Convolutional Networks in Variational Autoencoder based Voice Conversion

In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted in conventional VC systems, and hypothesize that the spectral features are in fact F0 dependent. Such hypothesis implies that during the conversion phase, the latent codes and the converted features in VAE based VC are in fact source F0 dependent. To this end, we propose to utilize the F0 as an additional input of the decoder. The model can learn ...

MOSNet: Deep Learning based Objective Assessment for Voice Conversion

Existing objective evaluation metrics for voice conversion (VC) are not always correlated with human perception. Therefore, training VC models with such criteria may not effectively improve naturalness and similarity of converted speech. In this paper, we propose deep learning-based assessment models to predict human ratings of converted speech. We adopt the convolutional and recurrent neural network models to build a mean opinion score (MOS) predictor, termed as MOSNet. The proposed models are tested on large-scale listening test results of the Voice Conversion Challenge (VCC) 2018. Experimen...