Unsupervised Acoustic Unit Representation Learning for Voice Conversion using WaveNet Auto-encoders

Unsupervised representation learning of speech has been of keen interest in recent years, which is for example evident in the wide interest of the ZeroSpeech challenges. This work presents a new method for learning frame level representations based on WaveNet auto-encoders. Of particular interest in the ZeroSpeech Challenge 2019 were models with discrete latent variable such as the Vector Quantized Variational Auto-Encoder (VQVAE). However these models generate speech with relatively poor quality. In this work we aim to address this with two approaches: first WaveNet is used as the decoder and...

Unsupervised Cross-Domain Singing Voice Conversion

We present a wav-to-wav generative model for the task of singing voice conversion from any identity. Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator. The proposed generative architecture is invariant to the speaker's identity and can be trained to generate target singers from unlabeled training data, using either speech or singing sources. The model is optimized in an end-to-end fashion without any manual supervision, such as lyrics, musical notes or parallel samples. T...

PitchNet: Unsupervised Singing Voice Conversion with Pitch Adversarial Network

Singing voice conversion is to convert a singer's voice to another one's voice without changing singing content. Recent work shows that unsupervised singing voice conversion can be achieved with an autoencoder-based approach [1]. However, the converted singing voice can be easily out of key, showing that the existing approach cannot model the pitch information precisely. In this paper, we propose to advance the existing unsupervised singing voice conversion method proposed in [1] to achieve more accurate pitch translation and flexible pitch manipulation. Specifically, the proposed PitchNet add...

Unsupervised Representation Disentanglement using Cross Domain Features and Adversarial Learning in Variational Autoencoder based Voice Conversion

An effective approach for voice conversion (VC) is to disentangle linguistic content from other components in the speech signal. The effectiveness of variational autoencoder (VAE) based VC (VAE-VC), for instance, strongly relies on this principle. In our prior work, we proposed a cross-domain VAE-VC (CDVAE-VC) framework, which utilized acoustic features of different properties, to improve the performance of VAE-VC. We believed that the success came from more disentangled latent representations. In this paper, we extend the CDVAE-VC framework by incorporating the concept of adversarial learning...

Towards Fine-Grained Prosody Control for Voice Conversion

In a typical voice conversion system, prior works utilize various acoustic features (e.g., the pitch, voiced/unvoiced flag, aperiodicity) of the source speech to control the prosody of generated waveform. However, the prosody is related with many factors, such as the intonation, stress and rhythm. It is a challenging task to perfectly describe the prosody through acoustic features. To deal with this problem, we propose prosody embeddings to model prosody. These embeddings are learned from the source speech in an unsupervised manner. We conduct experiments on our Mandarin corpus recoded by prof...

Unsupervised Singing Voice Conversion

We present a deep learning method for singing voice conversion. The proposed network is not conditioned on the text or on the notes, and it directly converts the audio of one singer to the voice of another. Training is performed without any form of supervision: no lyrics or any kind of phonetic features, no notes, and no matching samples between singers. The proposed network employs a single CNN encoder for all singers, a single WaveNet decoder, and a classifier that enforces the latent representation to be singer-agnostic. Each singer is represented by one embedding vector, which the decoder ...

Unsupervised End-to-End Learning of Discrete Linguistic Units for Voice Conversion

We present an unsupervised end-to-end training scheme where we discover discrete subword units from speech without using any labels. The discrete subword units are learned under an ASR-TTS autoencoder reconstruction setting, where an ASR-Encoder is trained to discover a set of common linguistic units given a variety of speakers, and a TTS-Decoder trained to project the discovered units back to the designated speech. We propose a discrete encoding method, Multilabel-Binary Vectors (MBV), to make the ASR-TTS autoencoder differentiable. We found that the proposed encoding method offers automatic ...

Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences

Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the pred...