F0-consistent many-to-many non-parallel voice conversion via conditional autoencoder

Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AutoVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker's identity embedding to synthesize a new voice. However, we found that while speak...

AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain underexplored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that ...