A Modularized Neural Network with Language-Specific Output Layers for Cross-lingual Voice Conversion

This paper presents a cross-lingual voice conversion framework that adopts a modularized neural network. The modularized neural network has a common input structure that is shared for both languages, and two separate output modules, one for each language. The idea is motivated by the fact that phonetic systems of languages are similar because humans share a common vocal production system, but acoustic renderings, such as prosody and phonotactic, vary a lot from language to language. The modularized neural network is trained to map Phonetic PosteriorGram (PPG) to acoustic features for multiple ...

Semi-supervised voice conversion with amortized variational inference

In this work we introduce a semi-supervised approach to the voice conversion problem, in which speech from a source speaker is converted into speech of a target speaker. The proposed method makes use of both parallel and non-parallel utterances from the source and target simultaneously during training. This approach can be used to extend existing parallel data voice conversion systems such that they can be trained with semi-supervision. We show that incorporating semi-supervision improves the voice conversion performance compared to fully supervised training when the number of parallel utteran...

Hierarchical Sequence to Sequence Voice Conversion with Limited Data

We present a voice conversion solution using recurrent sequence to sequence modeling for DNNs. Our solution takes advantage of recent advances in attention based modeling in the fields of Neural Machine Translation (NMT), Text-to-Speech (TTS) and Automatic Speech Recognition (ASR). The problem consists of converting between voices in a parallel setting when audio pairs are available. Our seq2seq architecture makes use of a hierarchical encoder to summarize input audio frames. On the decoder side, we use an attention based architecture used in recent TTS works. Since there is a dearth of large ...

AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain underexplored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that ...

Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source spea...

Singing voice conversion with non-parallel data

Singing voice conversion is a task to convert a song sang by a source singer to the voice of a target singer. In this paper, we propose using a parallel data free, many-to-one voice conversion technique on singing voices. A phonetic posterior feature is first generated by decoding singing voices through a robust Automatic Speech Recognition Engine (ASR). Then, a trained Recurrent Neural Network (RNN) with a Deep Bidirectional Long Short Term Memory (DBLSTM) structure is used to model the mapping from person-independent content to the acoustic features of the target person. F0 and aperiodic are...

Error Reduction Network for DBLSTM-based Voice Conversion

 So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The propo...

ACVAE-VC: Non-parallel many-to-many voice conversion with auxiliary classifier variational autoencoder

This paper proposes a non-parallel many-to-many voice conversion (VC) method using a variant of the conditional variational autoencoder (VAE) called an auxiliary classifier VAE (ACVAE). The proposed method has three key features. First, it adopts fully convolutional architectures to construct the encoder and decoder networks so that the networks can learn conversion rules that capture time dependencies in the acoustic feature sequences of source and target speech. Second, it uses an information-theoretic regularization for the model training to ensure that the information in the attribute clas...

Voice Conversion with Conditional SampleRNN

Here we present a novel approach to conditioning the SampleRNN generative model for voice conversion (VC). Conventional methods for VC modify the perceived speaker identity by converting between source and target acoustic features. Our approach focuses on preserving voice content and depends on the generative network to learn voice style. We first train a multi-speaker SampleRNN model conditioned on linguistic features, pitch contour, and speaker identity using a multi-speaker speech corpus. Voice-converted speech is generated using linguistic features and pitch contour extracted from the sour...

Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks

We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse map...