Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence Modeling

This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module. During the training stage, an encoder-decoder-based hybrid connectionist-temporal-classification-attention (CTC-attention) phoneme recognizer is trained, whose encoder has a bottle-neck layer. A BNE is obtained from the phoneme recognizer and is utilized to extract speaker-independent, dense and rich spoken content represen...

DurIAN-SC: Duration Informed Attention Network based Singing Voice Conversion System

Singing voice conversion is converting the timbre in the source singing to the target speaker's voice while keeping singing content the same. However, singing data for target speaker is much more difficult to collect compared with normal speech data.In this paper, we introduce a singing voice conversion algorithm that is capable of generating high quality target speaker's singing using only his/her normal speech data. First, we manage to integrate the training and conversion process of speech and singing into one framework by unifying the features used in standard speech synthesis system and s...

Recognition-Synthesis Based Non-Parallel Voice Conversion with Adversarial Learning

This paper presents an adversarial learning method for recognition-synthesis based non-parallel voice conversion. A recognizer is used to transform acoustic features into linguistic representations while a synthesizer recovers output features from the recognizer outputs together with the speaker identity. By separating the speaker characteristics from the linguistic representations, voice conversion can be achieved by replacing the speaker identity with the target one. In our proposed method, a speaker adversarial loss is adopted in order to obtain speaker-independent linguistic representation...

Transferring Source Style in Non-Parallel Voice Conversion

Voice conversion (VC) techniques aim to modify speaker identity of an utterance while preserving the underlying linguistic information. Most VC approaches ignore modeling of the speaking style (e.g. emotion and emphasis), which may contain the factors intentionally added by the speaker and should be retained during conversion. This study proposes a sequence-to-sequence based non-parallel VC approach, which has the capability of transferring the speaking style from the source speech to the converted speech by explicitly modeling. Objective evaluation and subjective listening tests show superior...

Scyclone: High-Quality and Parallel-Data-Free Voice Conversion Using Spectrogram and Cycle-Consistent Adversarial Networks

This paper proposes Scyclone, a high-quality voice conversion (VC) technique without parallel data training. Scyclone improves speech naturalness and speaker similarity of the converted speech by introducing CycleGAN-based spectrogram conversion with a simplified WaveRNN-based vocoder. In Scyclone, a linear spectrogram is used as the conversion features instead of vocoder parameters, which avoids quality degradation due to extraction errors in fundamental frequency and voiced/unvoiced parameters. The spectrogram of source and target speakers are modeled by modified CycleGAN networks, and the w...

F0-consistent many-to-many non-parallel voice conversion via conditional autoencoder

Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AutoVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker's identity embedding to synthesize a new voice. However, we found that while speak...

Multi-Target Emotional Voice Conversion With Neural Vocoders

Emotional voice conversion (EVC) is one way to generate expressive synthetic speech. Previous approaches mainly focused on modeling one-to-one mapping, i.e., conversion from one emotional state to another emotional state, with Mel-cepstral vocoders. In this paper, we investigate building a multi-target EVC (MTEVC) architecture, which combines a deep bidirectional long-short term memory (DBLSTM)-based conversion model and a neural vocoder. Phonetic posteriorgrams (PPGs) containing rich linguistic information are incorporated into the conversion model as auxiliary input features, which boost the...

Singing Voice Conversion with Disentangled Representations of Singer and Vocal Technique Using Variational Autoencoders

We propose a flexible framework that deals with both singer conversion and singers vocal technique conversion. The proposed model is trained on non-parallel corpora, accommodates many-to-many conversion, and leverages recent advances of variational autoencoders. It employs separate encoders to learn disentangled latent representations of singer identity and vocal technique separately, with a joint decoder for reconstruction. Conversion is carried out by simple vector arithmetic in the learned latent spaces. Both a quantitative analysis as well as a visualization of the converted spectrograms s...

Sequence-to-Sequence Acoustic Modeling for Voice Conversion

In this paper, a neural network named Sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training stage, a SCENT model is estimated by aligning the feature sequences of source and target speakers implicitly using attention mechanism. At conversion stage, acoustic features and durations of source utterances are converted simultaneously using the unified acoustic model. Mel-scale spectrograms are adopted as acoustic features which contain both excitation and vocal tract descriptions of speech signals. The bottleneck features extracted from ...

Voice Transformer Network: Sequence-to-Sequence Voice Conversion Using Transformer with Text-to-Speech Pretraining

We introduce a novel sequence-to-sequence (seq2seq) voice conversion (VC) model based on the Transformer architecture with text-to-speech (TTS) pretraining. Seq2seq VC models are attractive owing to their ability to convert prosody. While seq2seq models based on recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have been successfully applied to VC, the use of the Transformer network, which has shown promising results in various speech processing tasks, has not yet been investigated. Nonetheless, their data-hungry property and the mispronunciation of converted speech mak...