Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence Modeling

This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module. During the training stage, an encoder-decoder-based hybrid connectionist-temporal-classification-attention (CTC-attention) phoneme recognizer is trained, whose encoder has a bottle-neck layer. A BNE is obtained from the phoneme recognizer and is utilized to extract speaker-independent, dense and rich spoken content represen...

Transferring Source Style in Non-Parallel Voice Conversion

Voice conversion (VC) techniques aim to modify speaker identity of an utterance while preserving the underlying linguistic information. Most VC approaches ignore modeling of the speaking style (e.g. emotion and emphasis), which may contain the factors intentionally added by the speaker and should be retained during conversion. This study proposes a sequence-to-sequence based non-parallel VC approach, which has the capability of transferring the speaking style from the source speech to the converted speech by explicitly modeling. Objective evaluation and subjective listening tests show superior...