VQVC+: Одноразовое преобразование голоса с помощью векторного квантования и архитектуры U-Net

Преобразование голоса (VC) - это задача, которая преобразует тембр, акцент и тона исходного говорящего в аудио в другой звук, сохраняя при этом лингвистическое содержание. Это все еще сложная работа, особенно в условиях одного прохода. Методы преобразования голоса , основанные на автокодировщике, распутывают говорящего и содержание входной речи без указания личности говорящего, поэтому эти методы могут далее обобщаться на невидимых говорящих. Возможность распутывания достигается векторным квантованием (VQ), состязательным обучением или нормализацией экземпляра (IN). Однако несовершенное распут...

Cotatron: Речевой кодировщик с управлением транскрипцией для преобразования любого голоса во многие без параллельных данных

Мы предлагаем Cotatron, кодировщик речи с управлением транскрипцией для лингвистического представления, независимого от говорящего. Cosatron основан на архитектуре TTS с несколькими динамиками и может быть обучен с использованием обычных наборов данных TTS. Мы обучаем систему преобразования голоса восстанавливать речь с помощью функций Cotatron, что аналогично предыдущим методам, основанным на фонетической апостериограмме (PPG). Обучив и оценив нашу систему на 108 дикторах из набора данных VCTK, мы превзошли предыдущий метод как по естественности, так и по сходству дикторов. Наша система также...

F0-последовательное непараллельное преобразование голоса "многие ко многим" с помощью условного автоэнкодера

Непараллельное преобразование голоса "многие ко многим" остается интересной, но сложной задачей обработки речи. Было предложено множество методов, вдохновленных переносом стилей, таких как генеративные состязательные сети (GAN) и вариационные автоэнкодеры (VAE). Недавно AutoVC, метод, основанный на условных автоэнкодерах (CAE), достиг самых современных результатов, распутав идентификацию говорящего и речевой контент, используя ограничивающие информацию узкие места, и он обеспечивает преобразование с нулевым кадром путем замены встроенного идентификатора другого говорящего для синтеза нового го...

Преобразование певческого голоса с использованием разрозненных представлений о певце и вокальной технике с использованием вариационных автоэнкодеров

Мы предлагаем гибкую структуру, которая работает как с преобразованием голоса певца, так и с преобразованием вокальной техники певцов. Предлагаемая модель разработана на непараллельных корпусах, поддерживает преобразование "многие ко многим" и использует последние достижения вариационных автоэнкодеров. В нем используются отдельные кодеры для изучения скрытых представлений об индивидуальности певца и вокальной технике по отдельности, а для реконструкции используется совместный декодер. Преобразование осуществляется с помощью простой векторной арифметики в изученных скрытых пространствах. Как ко...

Оценка защиты конфиденциальности на основе преобразования голоса от информированных злоумышленников

Речевые данные передают важные атрибуты говорящего, такие как личность или акцент. При небольшом количестве найденных данных такие атрибуты могут быть выведены и использованы в злонамеренных целях: клонировании голоса, подделке и т.д. Цель анонимизации - сделать данные несвязываемыми, то есть гарантировать, что ни одно высказывание не может быть связано с его первоначальным носителем. В этой статье мы исследуем методы анонимизации, основанные на преобразовании голоса. В отличие от предыдущих работ, мы утверждаем, что различные атаки на привязку могут быть разработаны в зависимости от знаний зл...

Неконтролируемое представление с использованием междоменных функций и состязательного обучения при преобразовании голоса на основе вариационного автоэнкодера

Эффективный подход к преобразованию голоса (VC) заключается в отделении лингвистического контента от других компонентов речевого сигнала. Эффективность VC на основе вариационного автоэнкодера (VAE-VC), например, в значительной степени зависит от этого принципа. В нашей предыдущей работе мы предложили междоменную структуру VAE-VC (CDVAE-VC), которая использовала акустические характеристики с различными свойствами, чтобы улучшить производительность VAE-VC. Мы полагали, что успех был достигнут благодаря более четким скрытым представлениям. В этой статье мы расширяем рамки CDVAE-VC, включая концеп...

Непараллельное преобразование голоса из последовательности в последовательность с распутанными языковыми представлениями и представлениями говорящего

В этой статье представлен метод преобразования голоса из последовательности в последовательность (seq2seq) с использованием непараллельных обучающих данных. В этом методе из акустических характеристик извлекаются неразборчивые лингвистические представления и представления говорящего, и преобразование голоса достигается путем сохранения лингвистических представлений исходных высказываний при замене представлений говорящего на целевые. Наша модель построена в рамках нейронных сетей кодирования-декодирования. Кодировщик распознавания предназначен для изучения неразборчивых лингвистических предста...

Однократное преобразование голоса путем разделения представлений диктора и контента с нормализацией экземпляра

Недавно преобразование голоса без параллельных данных было успешно адаптировано к многоцелевому сценарию, в котором одна модель обучается преобразованию вводимого голоса для множества различных говорящих. Однако такая модель страдает тем ограничением, что она может преобразовывать голос только дикторов в обучающих данных, что сужает применимый сценарий преобразования голоса. В этой статье мы предложили новый подход к однократному преобразованию голоса, который позволяет выполнять преобразование голоса только с помощью примера произнесения от исходного и целевого диктора соответственно, при это...

Исследование формирования F0 и полностью сверточных сетей при преобразовании голоса на основе вариационного автоэнкодера

В этой работе мы исследуем эффективность двух методов улучшения преобразования голоса на основе вариационного автоэнкодера (VAE). Во-первых, мы пересматриваем взаимосвязь между характеристиками вокодера, получаемыми с помощью высококачественных вокодеров, используемых в обычных системах преобразования голоса, и выдвигаем гипотезу о том, что спектральные характеристики на самом деле зависят от F0. Такая гипотеза подразумевает, что на этапе преобразования скрытые коды и преобразованные функции при преобразовании голоса на основе VAE фактически зависят от источника F0. С этой целью мы предлагаем ...

Бесконтрольное сквозное изучение отдельных языковых единиц для преобразования голоса

Мы представляем неконтролируемую сквозную схему обучения, в которой мы извлекаем отдельные подсловные единицы из речи без использования каких-либо меток. Отдельные подсловные единицы запоминаются с помощью настройки восстановления автоэнкодера ASR-TTS, при которой ASR-кодер обучается обнаруживать набор общих языковых единиц для различных носителей языка, а TTS-декодер обучается проецировать обнаруженные единицы обратно в заданную речь. Мы предлагаем метод дискретного кодирования, многометровые двоичные векторы (MBV), чтобы сделать автоэнкодер ASR-TTS дифференцируемым. Мы обнаружили, что предло...