Преобразование певческого голоса с использованием разрозненных представлений о певце и вокальной технике с использованием вариационных автоэнкодеров

Мы предлагаем гибкую структуру, которая работает как с преобразованием голоса певца, так и с преобразованием вокальной техники певцов. Предлагаемая модель разработана на непараллельных корпусах, поддерживает преобразование "многие ко многим" и использует последние достижения вариационных автоэнкодеров. В нем используются отдельные кодеры для изучения скрытых представлений об индивидуальности певца и вокальной технике по отдельности, а для реконструкции используется совместный декодер. Преобразование осуществляется с помощью простой векторной арифметики в изученных скрытых пространствах. Как ко...

Преобразование голоса из невыровненных корпусов с использованием вариационного автоэнкодирования, порождающего состязательные сети Вассерштейна

Создание системы преобразования голоса из непараллельных речевых массивов является сложной задачей, но очень ценной в реальных сценариях применения. В большинстве случаев говорящий на исходном и целевом языках не повторяет одни и те же тексты или даже может говорить на разных языках. В этом случае одним из возможных, хотя и косвенных, решений является построение порождающей модели для речи. Порождающие модели фокусируются на объяснении наблюдений с помощью скрытых переменных вместо изучения функции попарного преобразования, тем самым обходя требование выравнивания речевого фрейма. В этой стать...

Обновление словаря для преобразования голоса на основе NMF с использованием сети кодер-декодер

В этой статье мы предлагаем метод обновления словаря для неотрицательной матричной факторизации (NMF) с использованием многомерных данных в задаче спектрального преобразования (SC). Преобразование голоса широко изучалось из-за его потенциальных применений, таких как персонализированный синтез речи и улучшение качества речи. Основанный на примерах NMF (ENMF) представляется эффективным и, вероятно, самым простым выбором среди всех методов для SC, при условии, что предоставляется параллельный корпус исходной и целевой речи. SC-системы на основе ENMF обычно нуждаются в большом количестве баз (обра...

Преобразование голоса из непараллельных корпусов с использованием вариационного автокодера

Мы предлагаем гибкую платформу для спектрального преобразования (SC), которая облегчает обучение с использованием невыровненных корпусов. Многие платформы SC требуют параллельных корпусов, фонетических выравниваний или явного соответствия по фреймам для изучения функций преобразования голоса с помощью выравниваний. Однако эти требования серьезно ограничивают область практического применения SC из-за нехватки или даже отсутствия параллельных корпусов. Мы предлагаем платформу SC, основанную на вариационном автокодировщике, которая позволяет нам использовать непараллельные корпуса. Фреймворк вклю...