Преобразование голоса без параллельных данных с использованием согласованных по циклу конкурирующих сетей
Мы предлагаем метод преобразования голоса без параллельных данных, который позволяет преобразовать исходную речь в целевую, не полагаясь на параллельные данные. Предлагаемый метод является универсальным, высококачественным, не требует параллельных данных и работает без каких-либо дополнительных данных, модулей или процедуры выравнивания. Это также позволяет избежать чрезмерного сглаживания, которое происходит во многих традиционных методах преобразования голоса, основанных на статистических моделях. Наш метод, называемый CycleGAN-VC, использует согласованную с циклом состязательную сеть (Cycle...