MoEVC: Система преобразования голоса, созданная экспертами, с механизмом разреженного стробирования для ускорения онлайн-вычислений

Благодаря последним достижениям в области технологий глубокого обучения производительность преобразования голоса с точки зрения качества и сходства была значительно улучшена. Однако для систем преобразования голоса на основе глубокого обучения, как правило, требуются большие объемы вычислений, что может привести к значительным задержкам и, таким образом, ограничить их применение в реальных приложениях. Поэтому повышение эффективности онлайн-вычислений стало важной задачей. В этом исследовании мы предлагаем новую систему преобразования голоса, основанную на сотрудничестве экспертов (MoE). Модел...

Сеть речевых трансформаторов: Преобразование голоса из последовательности в последовательность с помощью трансформатора с предварительной подготовкой текста в речь

Мы представляем новую модель преобразования голоса из последовательности в последовательность (seq2seq), основанную на архитектуре Transformer с предварительной подготовкой текста в речь. Модели преобразования голоса Seq2seq привлекательны благодаря своей способности преобразовывать просодию. В то время как модели seq2seq, основанные на рекуррентных нейронных сетях (RNNS) и сверточных нейронных сетях (CNNS), успешно применяются для преобразования голоса, использование сети Transformer, которая показала многообещающие результаты в различных задачах обработки речи, еще не исследовалось. Тем не м...

Непараллельное преобразование голоса из последовательности в последовательность с распутанными языковыми представлениями и представлениями говорящего

В этой статье представлен метод преобразования голоса из последовательности в последовательность (seq2seq) с использованием непараллельных обучающих данных. В этом методе из акустических характеристик извлекаются неразборчивые лингвистические представления и представления говорящего, и преобразование голоса достигается путем сохранения лингвистических представлений исходных высказываний при замене представлений говорящего на целевые. Наша модель построена в рамках нейронных сетей кодирования-декодирования. Кодировщик распознавания предназначен для изучения неразборчивых лингвистических предста...

MelGAN-VC: Преобразование голоса и передача звукового стиля на произвольно длинных сэмплах с использованием спектрограмм

Традиционные методы преобразования голоса основаны на параллельной записи нескольких говорящих, произносящих одни и те же предложения. Однако для реальных приложений параллельные данные доступны редко. Мы предлагаем MelGAN-VC - метод преобразования голоса, который основан на непараллельных речевых данных и способен преобразовывать аудиосигналы произвольной длины из исходного голоса в целевой. Сначала мы вычисляем спектрограммы на основе данных формы сигнала, а затем выполняем преобразование предметной области с использованием архитектуры Generative Adversarial Network (GAN). Дополнительная сет...

Эмоциональное преобразование голоса с помощью многозадачного обучения с преобразованием текста в речь

Преобразование голоса - это задача преобразовать голос человека в другой стиль, сохранив при этом лингвистическое содержание. Предыдущее современное решение по преобразованию голоса основано на модели "последовательность в последовательность" (seq2seq), которая могла привести к искажению лингвистической информации. Была предпринята попытка преодолеть это с помощью текстового контроля, который требует явного выравнивания, что лишает преимущества использования модели seq2seq. В этой статье представлен голосовой конвертер, использующий многозадачное обучение с преобразованием текста в речь. Прост...

Атаки "черного ящика" на автоматическую проверку говорящего с помощью преобразования голоса с обратной связью

Системы автоматической проверки диктора (ASV) на практике очень уязвимы к атакам подмены. Новейшие технологии преобразования голоса позволяют воспроизводить естественную для восприятия речь, имитирующую речь любого целевого носителя. Однако для того, чтобы обмануть систему ASV, может быть недостаточно точности восприятия личности говорящего. В этой работе мы предлагаем структуру, которая использует выходные данные системы ASV в качестве обратной связи с системой преобразования голоса. Платформа attacker framework - это черный ящик злоумышленника, который крадет голосовую идентификацию пользова...

Taco-VC: Преобразование голоса на базе Tacotron с одним говорящим и ограниченным объемом данных

В этой статье представлена Taco-VC, новая архитектура преобразования голоса, основанная на синтезаторе Tacotron, которая представляет собой модель последовательного преобразования голоса с учетом внимания. Обучение систем преобразования голоса с несколькими динамиками требует большого объема ресурсов, как в плане обучения, так и в плане размера корпуса. Taco-VC реализован с использованием синтезатора Tacotron с одним говорящим, основанного на фонетических апостериограммах (PPG), и вокодера Wavenet с одним говорящим, основанного на спектрограммах Mel. Для повышения качества преобразованной речи...

На пути к детальному управлению просодией для преобразования голоса

В типичной системе преобразования голоса в предыдущих работах использовались различные акустические характеристики (например, высота тона, озвученный/невокализованный флаг, непериодичность) исходной речи для управления просодией генерируемого сигнала. Однако просодия зависит от многих факторов, таких как интонация, ударение и ритм. Точное описание просодии с помощью акустических характеристик - непростая задача. Чтобы решить эту проблему, мы предлагаем встроенные функции просодии для моделирования просодии. Эти вставки извлекаются из исходной речи неконтролируемым образом. Мы проводим эксперим...

SoftGAN: Эффективное изучение генеративных моделей с помощью CycleGAN преобразования голоса

Преобразование голоса с помощью глубоких нейронных сетей стало чрезвычайно популярным за последние несколько лет благодаря усовершенствованиям по сравнению с предыдущими архитектурами преобразования голоса. В частности, архитектуры GAN, такие как CycleGAN и VAEGAN, предоставляют возможность изучать преобразование голоса из непараллельных баз данных. Однако методы, основанные на GAN, крайне нестабильны, часто требуют тщательной настройки гиперпараметров и могут привести к плохому преобразованию голосовой идентификации и существенному ухудшению качества преобразованного речевого сигнала. В этой ...

Модульная нейронная сеть с языковыми выходными слоями для межъязыкового преобразования голоса

В этой статье представлена система межъязыкового преобразования голоса, использующая модульную нейронную сеть. Модульная нейронная сеть имеет общую структуру ввода, которая используется совместно для обоих языков, и два отдельных выходных модуля, по одному для каждого языка. Идея продиктована тем фактом, что фонетические системы языков схожи, поскольку у людей общая система воспроизведения голоса, но акустические способы передачи, такие как просодия и фонотаксика, сильно различаются от языка к языку. Модульная нейронная сеть обучена сопоставлять фонетическую апостериограмму (PPG) с акустически...