Неконтролируемое представление с использованием междоменных функций и состязательного обучения при преобразовании голоса на основе вариационного автоэнкодера

Эффективный подход к преобразованию голоса (VC) заключается в отделении лингвистического контента от других компонентов речевого сигнала. Эффективность VC на основе вариационного автоэнкодера (VAE-VC), например, в значительной степени зависит от этого принципа. В нашей предыдущей работе мы предложили междоменную структуру VAE-VC (CDVAE-VC), которая использовала акустические характеристики с различными свойствами, чтобы улучшить производительность VAE-VC. Мы полагали, что успех был достигнут благодаря более четким скрытым представлениям. В этой статье мы расширяем рамки CDVAE-VC, включая концеп...

MoEVC: Система преобразования голоса, созданная экспертами, с механизмом разреженного стробирования для ускорения онлайн-вычислений

Благодаря последним достижениям в области технологий глубокого обучения производительность преобразования голоса с точки зрения качества и сходства была значительно улучшена. Однако для систем преобразования голоса на основе глубокого обучения, как правило, требуются большие объемы вычислений, что может привести к значительным задержкам и, таким образом, ограничить их применение в реальных приложениях. Поэтому повышение эффективности онлайн-вычислений стало важной задачей. В этом исследовании мы предлагаем новую систему преобразования голоса, основанную на сотрудничестве экспертов (MoE). Модел...

Обобщение прямой модификации формы сигнала на основе дифференциала спектра для преобразования голоса

Мы представляем прямую модификацию формы сигнала для преобразования голоса на основе дифференциала спектра (DIFFVC), которая может быть непосредственно применена в качестве модуля генерации формы сигнала к моделям преобразования голоса. Недавно предложенный DIFFVC позволяет избежать использования вокодера, сохраняя при этом богатые спектральные характеристики, что позволяет генерировать преобразованный голос высокого качества. Для применения платформы DIFFVC необходимо предварительно обучить модель, которая может оценивать спектральную разницу по преобразованной входной речи F0. Это требование...

Преобразование голоса на основе междоменных функций с использованием вариационных автокодеров

Эффективным подходом к непараллельному преобразованию голоса является использование глубоких нейронных сетей (DNN), в частности вариационных автокодеров (VAE), для моделирования скрытой структуры речи неконтролируемым образом. Предыдущее исследование подтвердило эффективность VAE, использующего ПРЯМЫЕ спектры для преобразования голоса. Однако, VAE, использующие другие типы спектральных характеристик, такие как мелкоцепстральные коэффициенты (MCC), которые связаны с восприятием человека и широко используются при преобразовании голоса, не были должным образом исследованы. Ожидается, что вместо и...