Задача преобразования голоса 2020: внутриязыковое полупараллельное и межъязыковое преобразование голоса

Задача преобразования голоса - это двухлетнее научное мероприятие, проводимое для сравнения и понимания различных систем преобразования голоса, построенных на общем наборе данных. В 2020 году мы организовали третье издание задачи и создали и распространили новую базу данных для двух задач: внутриязыкового полупараллельного и межъязыкового преобразования голоса. После двухмесячного периода испытаний мы получили 33 заявки, в том числе 3 базовых уровня, построенных на базе данных. По результатам тестов на прослушивание из краудсорсинга мы заметили, что методы преобразования голоса быстро прогресс...

Атаки "черного ящика" на автоматическую проверку говорящего с помощью преобразования голоса с обратной связью

Системы автоматической проверки диктора (ASV) на практике очень уязвимы к атакам подмены. Новейшие технологии преобразования голоса позволяют воспроизводить естественную для восприятия речь, имитирующую речь любого целевого носителя. Однако для того, чтобы обмануть систему ASV, может быть недостаточно точности восприятия личности говорящего. В этой работе мы предлагаем структуру, которая использует выходные данные системы ASV в качестве обратной связи с системой преобразования голоса. Платформа attacker framework - это черный ящик злоумышленника, который крадет голосовую идентификацию пользова...

Модульная нейронная сеть с языковыми выходными слоями для межъязыкового преобразования голоса

В этой статье представлена система межъязыкового преобразования голоса, использующая модульную нейронную сеть. Модульная нейронная сеть имеет общую структуру ввода, которая используется совместно для обоих языков, и два отдельных выходных модуля, по одному для каждого языка. Идея продиктована тем фактом, что фонетические системы языков схожи, поскольку у людей общая система воспроизведения голоса, но акустические способы передачи, такие как просодия и фонотаксика, сильно различаются от языка к языку. Модульная нейронная сеть обучена сопоставлять фонетическую апостериограмму (PPG) с акустически...

Преобразование голоса WaveNet без вокодера с использованием непараллельных данных

В типичной системе преобразования голоса вокодер обычно используется для преобразования речи в признаки и синтеза признаков в речь. Однако вокодер может быть источником ухудшения качества речи. В этой статье представлен подход к преобразованию голоса без использования вокодера с использованием вейвлета для непараллельных обучающих данных. Вместо того, чтобы работать с промежуточными функциями, предлагаемый подход использует WaveNet для непосредственного сопоставления фонетических апостериорограмм (PPG) с образцами формы сигнала. Таким образом, мы избегаем ошибок оценки, вызванных вокодером и п...

Высококачественное преобразование голоса с использованием просодических характеристик и спектральных характеристик с высоким разрешением

За последнее десятилетие методы преобразования голоса быстро развивались. Исследования показали, что характеристики диктора определяются спектральными характеристиками, а также различными просодическими особенностями. Большинство существующих методов преобразования фокусируются на спектральной характеристике, поскольку она непосредственно отражает тембровые характеристики, в то время как некоторые методы преобразования сосредоточены только на просодической характеристике, представленной основной частотой. В этой статье предлагается комплексная структура, использующая глубокие нейронные сети дл...