Задача преобразования голоса 2020: внутриязыковое полупараллельное и межъязыковое преобразование голоса

Задача преобразования голоса - это двухлетнее научное мероприятие, проводимое для сравнения и понимания различных систем преобразования голоса, построенных на общем наборе данных. В 2020 году мы организовали третье издание задачи и создали и распространили новую базу данных для двух задач: внутриязыкового полупараллельного и межъязыкового преобразования голоса. После двухмесячного периода испытаний мы получили 33 заявки, в том числе 3 базовых уровня, построенных на базе данных. По результатам тестов на прослушивание из краудсорсинга мы заметили, что методы преобразования голоса быстро прогресс...

Тест на подделку для конкурса по преобразованию голоса в 2018 году: Использование средств противодействия подделке для оценки речевых артефактов

Преобразование голоса направлено на преобразование характеристик говорящего без изменения содержания. Из-за ограниченности обучающих данных и несовершенства моделирования трудно добиться правдоподобной имитации говорящего без внесения артефактов обработки; поэтому оценка эффективности преобразования голоса обычно включает в себя как сходство говорящего, так и оценку качества с помощью человека. Поскольку это трудоемкий, дорогостоящий и невоспроизводимый процесс, он затрудняет быстрое создание прототипов новой технологии преобразования голоса. Мы рассматриваем оценку искажений, используя альтер...

Конкурс по преобразованию голоса в 2018 году: Содействие разработке параллельных и непараллельных методов

Мы представляем конкурс Voice Conversion Challenge 2018, разработанный в дополнение к выпуску 2016 года с целью обеспечения общей основы для оценки и сравнения различных современных систем преобразования голоса. Цель задания состояла в том, чтобы выполнить преобразование голоса (т.е. преобразовать голосовую идентификацию) исходного носителя в целевой, сохранив при этом лингвистическую информацию. В дополнение к предыдущему заданию мы рассматривали как параллельные, так и непараллельные данные для формирования задач Hub и Spoke соответственно. В общей сложности 23 команды со всего мира представ...