Бесконтрольное сквозное изучение отдельных языковых единиц для преобразования голоса

Мы представляем неконтролируемую сквозную схему обучения, в которой мы извлекаем отдельные подсловные единицы из речи без использования каких-либо меток. Отдельные подсловные единицы запоминаются с помощью настройки восстановления автоэнкодера ASR-TTS, при которой ASR-кодер обучается обнаруживать набор общих языковых единиц для различных носителей языка, а TTS-декодер обучается проецировать обнаруженные единицы обратно в заданную речь. Мы предлагаем метод дискретного кодирования, многометровые двоичные векторы (MBV), чтобы сделать автоэнкодер ASR-TTS дифференцируемым. Мы обнаружили, что предло...

Ритмично-гибкое преобразование голоса без параллельных данных с использованием циклических последовательностей фонемных апостериограмм

Скорость произнесения относится к среднему количеству фонем за единицу времени, в то время как ритмические паттерны относятся к распределению длительности для реализации разных фонем в разных фонетических структурах. И то, и другое является ключевыми компонентами просодии в речи, которая отличается у разных носителей языка. Такие модели, как cycle-consistent adversarial network (Cycle-GAN) и variational auto-encoder (VAE), успешно применяются для решения задач преобразования голоса без параллельных данных. Однако из-за архитектуры нейронных сетей и векторов характеристик, выбранных для этих по...