V2S attack: building DNN-based voice conversion from automatic speaker verification

This paper presents a new voice impersonation attack using voice conversion (VC). Enrolling personal voices for automatic speaker verification (ASV) offers natural and flexible biometric authentication systems. Basically, the ASV systems do not include the users' voice data. However, if the ASV system is unexpectedly exposed and hacked by a malicious attacker, there is a risk that the attacker will use VC techniques to reproduce the enrolled user's voices. We name this the verification-to-synthesis (V2S) attack'' and propose VC training with the ASV and pre-trained automatic speech recognition...

Generalization of Spectrum Differential based Direct Waveform Modification for Voice Conversion

We present a modification to the spectrum differential based direct waveform modification for voice conversion (DIFFVC) so that it can be directly applied as a waveform generation module to voice conversion models. The recently proposed DIFFVC avoids the use of a vocoder, meanwhile preserves rich spectral details hence capable of generating high quality converted voice. To apply the DIFFVC framework, a model that can estimate the spectral differential from the F0 transformed input speech needs to be trained beforehand. This requirement imposes several constraints, including a limitation on the...

Non-Parallel Voice Conversion with Cyclic Variational Autoencoder

In this paper, we present a novel technique for a non-parallel voice conversion (VC) with the use of cyclic variational autoencoder (CycleVAE)-based spectral modeling. In a variational autoencoder(VAE) framework, a latent space, usually with a Gaussian prior, is used to encode a set of input features. In a VAE-based VC, the encoded latent features are fed into a decoder, along with speaker-coding features, to generate estimated spectra with either the original speaker identity (reconstructed) or another speaker identity (converted). Due to the non-parallel modeling condition, the converted spe...

Statistical Voice Conversion with Quasi-Periodic WaveNet Vocoder

In this paper, we investigate the effectiveness of a quasi-periodic WaveNet (QPNet) vocoder combined with a statistical spectral conversion technique for a voice conversion task. The WaveNet (WN) vocoder has been applied as the waveform generation module in many different voice conversion frameworks and achieves significant improvement over conventional vocoders. However, because of the fixed dilated convolution and generic network architecture, the WN vocoder lacks robustness against unseen input features and often requires a huge network size to achieve acceptable speech quality. Such limita...

Hierarchical Sequence to Sequence Voice Conversion with Limited Data

We present a voice conversion solution using recurrent sequence to sequence modeling for DNNs. Our solution takes advantage of recent advances in attention based modeling in the fields of Neural Machine Translation (NMT), Text-to-Speech (TTS) and Automatic Speech Recognition (ASR). The problem consists of converting between voices in a parallel setting when audio pairs are available. Our seq2seq architecture makes use of a hierarchical encoder to summarize input audio frames. On the decoder side, we use an attention based architecture used in recent TTS works. Since there is a dearth of large ...

Refined WaveNet Vocoder for Variational Autoencoder Based Voice Conversion

This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet vocoders are trained with natural acoustic features but conditioned on the converted features in the conversion stage for VC, and such a mismatch often causes significant quality and similarity degradation. In this work, we take advantage of the particular structure of VAEs to refine WaveNet vocoders with the self-reconstructed features generated ...

Investigation of F0 conditioning and Fully Convolutional Networks in Variational Autoencoder based Voice Conversion

In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted in conventional VC systems, and hypothesize that the spectral features are in fact F0 dependent. Such hypothesis implies that during the conversion phase, the latent codes and the converted features in VAE based VC are in fact source F0 dependent. To this end, we propose to utilize the F0 as an additional input of the decoder. The model can learn ...

Unsupervised End-to-End Learning of Discrete Linguistic Units for Voice Conversion

We present an unsupervised end-to-end training scheme where we discover discrete subword units from speech without using any labels. The discrete subword units are learned under an ASR-TTS autoencoder reconstruction setting, where an ASR-Encoder is trained to discover a set of common linguistic units given a variety of speakers, and a TTS-Decoder trained to project the discovered units back to the designated speech. We propose a discrete encoding method, Multilabel-Binary Vectors (MBV), to make the ASR-TTS autoencoder differentiable. We found that the proposed encoding method offers automatic ...

AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain underexplored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that ...

Measuring the Effectiveness of Voice Conversion on Speaker Identification and Automatic Speech Recognition Systems

This paper evaluates the effectiveness of a Cycle-GAN based voice converter (VC) on four speaker identification (SID) systems and an automated speech recognition (ASR) system for various purposes. Audio samples converted by the VC model are classified by the SID systems as the intended target at up to 46% top-1 accuracy among more than 250 speakers. This encouraging result in imitating the target styles led us to investigate if converted (synthetic) samples can be used to improve ASR training. Unfortunately, adding synthetic data to the ASR training set only marginally improves word and charac...