AttS2S-VC: Sequence-to-Sequence Voice Conversion with Attention and Context Preservation Mechanisms

This paper describes a method based on a sequence-to-sequence learning (Seq2Seq) with attention and context preservation mechanism for voice conversion (VC) tasks. Seq2Seq has been outstanding at numerous tasks involving sequence modeling such as speech synthesis and recognition, machine translation, and image captioning. In contrast to current VC techniques, our method 1) stabilizes and accelerates the training procedure by considering guided attention and proposed context preservation losses, 2) allows not only spectral envelopes but also fundamental frequency contours and durations of speec...

Whispered-to-voiced Alaryngeal Speech Conversion with Generative Adversarial Networks

Most methods of voice restoration for patients suffering from aphonia either produce whispered or monotone speech. Apart from intelligibility, this type of speech lacks expressiveness and naturalness due to the absence of pitch (whispered speech) or artificial generation of it (monotone speech). Existing techniques to restore prosodic information typically combine a vocoder, which parameterises the speech signal, with machine learning techniques that predict prosodic information. In contrast, this paper describes an end-to-end neural approach for estimating a fully-voiced speech waveform from ...

Error Reduction Network for DBLSTM-based Voice Conversion

 So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The propo...

Voice Conversion Based on Cross-Domain Features Using Variational Auto Encoders

An effective approach to non-parallel voice conversion (VC) is to utilize deep neural networks (DNNs), specifically variational auto encoders (VAEs), to model the latent structure of speech in an unsupervised manner. A previous study has confirmed the effectiveness of VAE using the STRAIGHT spectra for VC. However, VAE using other types of spectral features such as melcepstral coefficients (MCCs), which are related to human perception and have been widely used in VC, have not been properly investigated. Instead of using one specific type of spectral feature, it is expected that VAE may benefit...

ACVAE-VC: Non-parallel many-to-many voice conversion with auxiliary classifier variational autoencoder

This paper proposes a non-parallel many-to-many voice conversion (VC) method using a variant of the conditional variational autoencoder (VAE) called an auxiliary classifier VAE (ACVAE). The proposed method has three key features. First, it adopts fully convolutional architectures to construct the encoder and decoder networks so that the networks can learn conversion rules that capture time dependencies in the acoustic feature sequences of source and target speech. Second, it uses an information-theoretic regularization for the model training to ensure that the information in the attribute clas...

Voice Conversion with Conditional SampleRNN

Here we present a novel approach to conditioning the SampleRNN generative model for voice conversion (VC). Conventional methods for VC modify the perceived speaker identity by converting between source and target acoustic features. Our approach focuses on preserving voice content and depends on the generative network to learn voice style. We first train a multi-speaker SampleRNN model conditioned on linguistic features, pitch contour, and speaker identity using a multi-speaker speech corpus. Voice-converted speech is generated using linguistic features and pitch contour extracted from the sour...

StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks

This paper proposes a method that allows non-parallel many-to-many voice conversion (VC) by using a variant of a generative adversarial network (GAN) called StarGAN. Our method, which we call StarGAN-VC, is noteworthy in that it (1) requires no parallel utterances, transcriptions, or time alignment procedures for speech generator training, (2) simultaneously learns many-to-many mappings across different attribute domains using a single generator network, (3) is able to generate converted speech signals quickly enough to allow real-time implementations and (4) requires only several minutes of t...

Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations

Recently, cycle-consistent adversarial network (Cycle-GAN) has been successfully applied to voice conversion to a different speaker without parallel data, although in those approaches an individual model is needed for each target speaker. In this paper, we propose an adversarial learning framework for voice conversion, with which a single model can be trained to convert the voice to many different speakers, all without parallel data, by separating the speaker characteristics from the linguistic content in speech signals. An autoencoder is first trained to extract speaker-independent latent rep...

High-quality nonparallel voice conversion based on cycle-consistent adversarial network

Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neu...

On Using Backpropagation for Speech Texture Generation and Voice Conversion

Inspired by recent work on neural network image generation which rely on backpropagation towards the network inputs, we present a proof-of-concept system for speech texture synthesis and voice conversion based on two mechanisms: approximate inversion of the representation learned by a speech recognition neural network, and on matching statistics of neuron activations between different source and target utterances. Similar to image texture synthesis and neural style transfer, the system works by optimizing a cost function with respect to the input waveform samples. To this end we use a differen...