Lifter Training and Sub-band Modeling for Computationally Efficient and High-Quality Voice Conversion Using Spectral Differentials

In this paper, we propose computationally efficient and high-quality methods for statistical voice conversion (VC) with direct waveform modification based on spectral differentials. The conventional method with a minimum-phase filter achieves high-quality conversion but requires heavy computation in filtering. This is because the minimum phase using a fixed lifter of the Hilbert transform often results in a long-tap filter. One of our methods is a data-driven method for lifter training. Since this method takes filter truncation into account in training, it can shorten the tap length of the fil...

Vocoder-free End-to-End Voice Conversion with Transformer Network

Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size. However, speech generator with MFB approaches require additional vocoder that needs a huge amount of computation expense for training process. The additional pre/post processing such as MFB and vocoder is not essential to convert real human speech to others. It is possible to only use the raw spectrum along with the phase to generate different style of voices with clear pronunciation. In this regard, we propose a fast and effective approach to convert...

Sequence-to-Sequence Acoustic Modeling for Voice Conversion

In this paper, a neural network named Sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training stage, a SCENT model is estimated by aligning the feature sequences of source and target speakers implicitly using attention mechanism. At conversion stage, acoustic features and durations of source utterances are converted simultaneously using the unified acoustic model. Mel-scale spectrograms are adopted as acoustic features which contain both excitation and vocal tract descriptions of speech signals. The bottleneck features extracted from ...

Mel-spectrogram augmentation for sequence to sequence voice conversion

When training the sequence-to-sequence voice conversion model, we need to handle an issue of insufficient data about the number of speech tuples which consist of the same utterance. This study experimentally investigated the effects of Mel-spectrogram augmentation on the sequence-to-sequence voice conversion model. For Mel-spectrogram augmentation, we adopted the policies proposed in SpecAugment. In addition, we propose new policies for more data variations. To find the optimal hyperparameters of augmentation policies for voice conversion, we experimented based on the new metric, namely deform...

Non-Parallel Sequence-to-Sequence Voice Conversion with Disentangled Linguistic and Speaker Representations

This paper presents a method of sequence-to-sequence (seq2seq) voice conversion using non-parallel training data. In this method, disentangled linguistic and speaker representations are extracted from acoustic features, and voice conversion is achieved by preserving the linguistic representations of source utterances while replacing the speaker representations with the target ones. Our model is built under the framework of encoder-decoder neural networks. A recognition encoder is designed to learn the disentangled linguistic representations with two strategies. First, phoneme transcriptions of...

Emotional Voice Conversion using Multitask Learning with Text-to-speech

Voice conversion (VC) is a task to transform a person's voice to different style while conserving linguistic contents. Previous state-of-the-art on VC is based on sequence-to-sequence (seq2seq) model, which could mislead linguistic information. There was an attempt to overcome it by using textual supervision, it requires explicit alignment which loses the benefit of using seq2seq model. In this paper, a voice converter using multitask learning with text-to-speech (TTS) is presented. The embedding space of seq2seq-based TTS has abundant information on the text. The role of the decoder of TTS is...

Black-box Attacks on Automatic Speaker Verification using Feedback-controlled Voice Conversion

Automatic speaker verification (ASV) systems in practice are greatly vulnerable to spoofing attacks. The latest voice conversion technologies are able to produce perceptually natural sounding speech that mimics any target speakers. However, the perceptual closeness to a speaker's identity may not be enough to deceive an ASV system. In this work, we propose a framework that uses the output scores of an ASV system as the feedback to a voice conversion system. The attacker framework is a black-box adversary that steals one's voice identity, because it does not require any knowledge about the ASV ...

Taco-VC: A Single Speaker Tacotron based Voice Conversion with Limited Data

This paper introduces Taco-VC, a novel architecture for voice conversion (VC) based on the Tacotron synthesizer, which is a sequence-to-sequence with attention model. The training of multi-speaker voice conversion systems requires a large amount of resources, both in training and corpus size. Taco-VC is implemented using a single speaker Tacotron synthesizer based on Phonetic Posteriorgrams (PPGs) and a single speaker Wavenet vocoder conditioned on Mel Spectrograms. To enhance the converted speech quality, the outputs of the Tacotron are passed through a novel speech-enhancement network, which...

Many-to-Many Voice Conversion using Cycle-Consistent Variational Autoencoder with Multiple Decoders

One of the obstacles in many-to-many voice conversion is the requirement of the parallel training data, which contain pairs of utterances with the same linguistic content spoken by different speakers. Since collecting such parallel data is a highly expensive task, many works attempted to use non-parallel training data for many-to-many voice conversion. One of such approaches is using the variational autoencoder (VAE). Though it can handle many-to-many voice conversion without the parallel training, the VAE based voice conversion methods suffer from low sound qualities of the converted speech. ...

DNN-based cross-lingual voice conversion using Bottleneck Features

Cross-lingual voice conversion (CLVC) is a quite challenging task since the source and target speakers speak different languages. This paper proposes a CLVC framework based on bottleneck features and deep neural network (DNN). In the proposed method, the bottleneck features extracted from a deep auto-encoder (DAE) are used to represent speaker-independent features of speech signals from different languages. A DNN model is trained to learn the mapping between bottleneck features and the corresponding spectral features of the target speaker. The proposed method can capture speaker-specific chara...