Whispered-to-voiced Alaryngeal Speech Conversion with Generative Adversarial Networks

Most methods of voice restoration for patients suffering from aphonia either produce whispered or monotone speech. Apart from intelligibility, this type of speech lacks expressiveness and naturalness due to the absence of pitch (whispered speech) or artificial generation of it (monotone speech). Existing techniques to restore prosodic information typically combine a vocoder, which parameterises the speech signal, with machine learning techniques that predict prosodic information. In contrast, this paper describes an end-to-end neural approach for estimating a fully-voiced speech waveform from ...

Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences

Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the pred...

StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks

This paper proposes a method that allows non-parallel many-to-many voice conversion (VC) by using a variant of a generative adversarial network (GAN) called StarGAN. Our method, which we call StarGAN-VC, is noteworthy in that it (1) requires no parallel utterances, transcriptions, or time alignment procedures for speech generator training, (2) simultaneously learns many-to-many mappings across different attribute domains using a single generator network, (3) is able to generate converted speech signals quickly enough to allow real-time implementations and (4) requires only several minutes of t...

Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations

Recently, cycle-consistent adversarial network (Cycle-GAN) has been successfully applied to voice conversion to a different speaker without parallel data, although in those approaches an individual model is needed for each target speaker. In this paper, we propose an adversarial learning framework for voice conversion, with which a single model can be trained to convert the voice to many different speakers, all without parallel data, by separating the speaker characteristics from the linguistic content in speech signals. An autoencoder is first trained to extract speaker-independent latent rep...

High-quality nonparallel voice conversion based on cycle-consistent adversarial network

Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neu...

Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks

We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse map...

Voice Conversion from Unaligned Corpora using Variational Autoencoding Wasserstein Generative Adversarial Networks

Building a voice conversion (VC) system from non-parallel speech corpora is challenging but highly valuable in real application scenarios. In most situations, the source and the target speakers do not repeat the same texts or they may even speak different languages. In this case, one possible, although indirect, solution is to build a generative model for speech. Generative models focus on explaining the observations with latent variables instead of learning a pairwise transformation function, thereby bypassing the requirement of speech frame alignment. In this paper, we propose a non-parallel...

Voice Conversion using Convolutional Neural Networks

The human auditory system is able to distinguish the vocal source of thousands of speakers, yet not much is known about what features the auditory system uses to do this. Fourier Transforms are capable of capturing the pitch and harmonic structure of the speaker but this alone proves insufficient at identifying speakers uniquely. The remaining structure, often referred to as timbre, is critical to identifying speakers but we understood little about it. In this paper we use recent advances in neural networks in order to manipulate the voice of one speaker into another by transforming not only t...