Nonparallel Voice Conversion with Augmented Classifier Star Generative Adversarial Networks

We have previously proposed a method that allows for non-parallel voice conversion (VC) by using a variant of generative adversarial networks (GANs) called StarGAN. The main features of our method, called StarGAN-VC, are as follows: First, it requires no parallel utterances, transcriptions, or time alignment procedures for speech generator training. Second, it can simultaneously learn mappings across multiple domains using a single generator network so that it can fully exploit available training data collected from multiple domains to capture latent features that are common to all the domains...

Spectrum and Prosody Conversion for Cross-lingual Voice Conversion with CycleGAN

Cross-lingual voice conversion aims to change source speaker's voice to sound like that of target speaker, when source and target speakers speak different languages. It relies on non-parallel training data from two different languages, hence, is more challenging than mono-lingual voice conversion. Previous studies on cross-lingual voice conversion mainly focus on spectral conversion with a linear transformation for F0 transfer. However, as an important prosodic factor, F0 is inherently hierarchical, thus it is insufficient to just use a linear method for conversion. We propose the use of conti...

VAW-GAN for Singing Voice Conversion with Non-parallel Training Data

Singing voice conversion aims to convert singer's voice from source to target without changing singing content. Parallel training data is typically required for the training of singing voice conversion system, that is however not practical in real-life applications. Recent encoder-decoder structures, such as variational autoencoding Wasserstein generative adversarial network (VAW-GAN), provide an effective way to learn a mapping through non-parallel training data. In this paper, we propose a singing voice conversion framework that is based on VAW-GAN. We train an encoder to disentangle singer ...

Unsupervised Cross-Domain Singing Voice Conversion

We present a wav-to-wav generative model for the task of singing voice conversion from any identity. Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator. The proposed generative architecture is invariant to the speaker's identity and can be trained to generate target singers from unlabeled training data, using either speech or singing sources. The model is optimized in an end-to-end fashion without any manual supervision, such as lyrics, musical notes or parallel samples. T...

Recognition-Synthesis Based Non-Parallel Voice Conversion with Adversarial Learning

This paper presents an adversarial learning method for recognition-synthesis based non-parallel voice conversion. A recognizer is used to transform acoustic features into linguistic representations while a synthesizer recovers output features from the recognizer outputs together with the speaker identity. By separating the speaker characteristics from the linguistic representations, voice conversion can be achieved by replacing the speaker identity with the target one. In our proposed method, a speaker adversarial loss is adopted in order to obtain speaker-independent linguistic representation...

Defending Your Voice: Adversarial Attack on Voice Conversion

Substantial improvements have been achieved in recent years in voice conversion, which converts the speaker characteristics of an utterance into those of another speaker without changing the linguistic content of the utterance. Nonetheless, the improved conversion technologies also led to concerns about privacy and authentication. It thus becomes highly desired to be able to prevent one's voice from being improperly utilized with such voice conversion technologies. This is why we report in this paper the first known attempt to try to perform adversarial attack on voice conversion. We introduce...

Converting Anyone's Emotion: Towards Speaker-Independent Emotional Voice Conversion

Emotional voice conversion aims to convert the emotion of the speech from one state to another while preserving the linguistic content and speaker identity. The prior studies on emotional voice conversion are mostly carried out under the assumption that emotion is speaker-dependent. We believe that emotions are expressed universally across speakers, therefore, the speaker-independent mapping between emotional states of speech is possible. In this paper, we propose to build a speaker-independent emotional voice conversion framework, that can convert anyone's emotion without the need for paralle...

Scyclone: High-Quality and Parallel-Data-Free Voice Conversion Using Spectrogram and Cycle-Consistent Adversarial Networks

This paper proposes Scyclone, a high-quality voice conversion (VC) technique without parallel data training. Scyclone improves speech naturalness and speaker similarity of the converted speech by introducing CycleGAN-based spectrogram conversion with a simplified WaveRNN-based vocoder. In Scyclone, a linear spectrogram is used as the conversion features instead of vocoder parameters, which avoids quality degradation due to extraction errors in fundamental frequency and voiced/unvoiced parameters. The spectrogram of source and target speakers are modeled by modified CycleGAN networks, and the w...

Emotional Voice Conversion With Cycle-consistent Adversarial Network

Emotional Voice Conversion, or emotional VC, is a technique of converting speech from one emotion state into another one, keeping the basic linguistic information and speaker identity. Previous approaches for emotional VC need parallel data and use dynamic time warping (DTW) method to temporally align the source-target speech parameters. These approaches often define a minimum generation loss as the objective function, such as L1 or L2 loss, to learn model parameters. Recently, cycle-consistent generative adversarial networks (CycleGAN) have been used successfully for non-parallel VC. This pap...

PitchNet: Unsupervised Singing Voice Conversion with Pitch Adversarial Network

Singing voice conversion is to convert a singer's voice to another one's voice without changing singing content. Recent work shows that unsupervised singing voice conversion can be achieved with an autoencoder-based approach [1]. However, the converted singing voice can be easily out of key, showing that the existing approach cannot model the pitch information precisely. In this paper, we propose to advance the existing unsupervised singing voice conversion method proposed in [1] to achieve more accurate pitch translation and flexible pitch manipulation. Specifically, the proposed PitchNet add...