Vowels and Prosody Contribution in Neural Network Based Voice Conversion Algorithm with Noisy Training Data

This research presents a neural network based voice conversion (VC) model. While it is a known fact that voiced sounds and prosody are the most important component of the voice conversion framework, what is not known is their objective contributions particularly in a noisy and uncontrolled environment. This model uses a 2-layer feedforward neural network to map the Linear prediction analysis coefficients of a source speaker to the acoustic vector space of the target speaker with a view to objectively determine the contributions of the voiced, unvoiced and supra-segmental components of sounds t...

Voice Conversion Using Coefficient Mapping and Neural Network

The research presents a voice conversion model using coefficient mapping and neural network. Most previous works on parametric speech synthesis did not account for losses in spectral details causing over smoothing and invariably, an appreciable deviation of the converted speech from the targeted speaker. An improved model that uses both linear predictive coding (LPC) and line spectral frequency (LSF) coefficients to parametrize the source speech signal was developed in this work to reveal the effect of over-smoothing. Non-linear mapping ability of neural network was employed in mapping the sou...