Высококачественное непараллельное преобразование голоса на основе циклически согласованной состязательной сети

Несмотря на то, что алгоритмы преобразования голоса достигли значительных успехов с развитием машинного обучения, по-прежнему трудно достичь высокой производительности при использовании непараллельных данных. В этой статье мы предлагаем использовать циклически согласованную состязательную сеть (CycleGAN) для обучения непараллельному преобразованию голоса на основе данных. CycleGAN - это генеративная состязательная сеть (GAN), изначально разработанная для непарного преобразования изображений в изображения. Субъективная оценка межполовой конверсии показала, что предложенный метод значительно пре...