Evaluating Voice Conversion-based Privacy Protection against Informed Attackers

Speech data conveys sensitive speaker attributes like identity or accent. With a small amount of found data, such attributes can be inferred and exploited for malicious purposes: voice cloning, spoofing, etc. Anonymization aims to make the data unlinkable, i.e., ensure that no utterance can be linked to its original speaker. In this paper, we investigate anonymization methods based on voice conversion. In contrast to prior work, we argue that various linkage attacks can be designed depending on the attackers' knowledge about the anonymization scheme. We compare two frequency warping-based conv...

Robustness of Voice Conversion Techniques Under Mismatched Conditions

Most of the existing studies on voice conversion (VC) are conducted in acoustically matched conditions between source and target signal. However, the robustness of VC methods in presence of mismatch remains unknown. In this paper, we report a comparative analysis of different VC techniques under mismatched conditions. The extensive experiments with five different VC techniques on CMU ARCTIC corpus suggest that performance of VC methods substantially degrades in noisy conditions. We have found that bilinear frequency warping with amplitude scaling (BLFWAS) outperforms other methods in most of t...